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Abstract. The perturbation proceduressuggested in the spin-orbit (so) couplingmechanism 
contibuting to the %-state splitting are examined in detail and round to be all correct for 
tetragonal symmetry, on the basis of a diagonalization calculation. The BlumMrbach 
procedure is most appropriate. The sixth-order perturbation must be taken into account in 
strong fields for the procedure proposed by Watanabe and developed by Yu and Zhao, and 
the expression is given here 

Among the various mechanisms which contribute to the zero-field splitting of %-state 
ions, the spin-orbit (SO) coupling mechanism has been found to be most important for 
many substances and thus has become the subject of many recent papers [I-51. There 
areat least three altemative approaches to the perturbation procedure [ 11. Among them 
the well known and extensively used Blume-Orbach procedures [6, 71 (called so-I 
hereafter) was recently indicated as not appropriate for rhombic symmetry [3]. The 
procedure proposed by Watanabe [8] and developed by Yu and Zhao [2] (denoted 
so-11 hereafter) was also criticized as incorrect [4]. This paper willexamine the procedures 
in detail on the basis of a diagonalization calculation and will show them to he all correct 
for tetragonal symmetry. 

For our purpose, we omit the spin doublets, the contributionof wmhich to the splitting 
parameter D is of the order two orders of magnitude higher than the lowest value [l, 2, 
6-81 and thus must be three or more orders of magnitude less than the total value. We 
need to consider the r7 representation of 0: , whose matrix is 26 X 26 dimensional. The 
r , (D;)  symmetry-adapted 'weak-field' basis I P C Y S L J M ~ )  is found to he 

I J M J )  M I  = -8 * 4n (1) 
with n = 0,1,2, . . . and I M,I s J .  The elementary elements for the crystal field V and 
the spin-orbit interaction H ,  are given as 

X ((25 + 1)(2J' + l))'/Z(IJJC(k)JJI)(INCYSLJJ U(k)JJIN~'S'L')Bx,6,yy (2) 
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S' L' 1 

(3) 

Here, the summation in (2) is taken over k = 2, 4 and q = 0, 24. The values of the 
reduced matrix elements can be found from [9]. D(= b?)  is given as 

L s  J1 (INrUSWM,/H,, IINLr'S'L'J'M;) = ( -1) '+S.+J(I(I  + 1)(21+ 1 ) ) q  
x (INLrSLII y(")IIINa'S'L')~6,1.6,,,;. 

D = i [ W ( % ,  5 )  - W-8, -91. (4) 
Table 1 shows D versus D,, the cubic component of a field. The calculation was made 

by assuming B = 91 1 and C = 3273 for the Racah parameters, CY = 65 and @ = - 131 for 
the Trees-Raeah corrections and 6 = 337 cm-' for the SO coupling constant of Mn2+ 
ions. Another reasonable choice for the parameters will not change the conclusion 
drawn here. All the procedures, including SO-III (developed according to Macfarlane 
[lo]; see [l]) reach values, in the lowest-order perturbation, close to and less than those 
by diagonalization except for s0.11, which is bad when D, > 700 cm-'. The next (sixth) 
order of this procedure must be taken into account for strong fields, and the expression 
is calculated following Yu and Zhao [2] to be 

D(6) = (252/108045P2DFG)(15BUIB,[(248m - 25Ba)(B20 + B J ~ )  + 3505L) 

+ 14B20B&(50Ba - 69Bm)I + (2E2/632P3GZ) 
X (252B$ - 255L - 20BbBL) - ( ~ B ~ O ~ ~ / ~ ~ ~ P ~ D G ) ( Z B L  + S E & )  

+ (~2/194481P2GZF)[5684B~ - 140B&Bk, - 675BL 

- 27B&(25B& + 42BL) + 90B2~B,o(-15B& + 42B&)] 

- 9B&E2/2450P3D2 - (B~~2/200075P2D2F) 

X [1050BL + (24820 - 25B,)*]. ( 5 )  
After it is taken into account, so-II gives a value less than the accurate value by at most 
17% in the range ID,I S 1500cm-'. 

In figure 1 we display the &-dependence of D. We see that 50-11 gives a correct E,- 
dependence. Neither so-I nor so-111 gives the correct relation for Bz0 in their lowest order 
and thus suggests a constant independence. The effect of B, is not negligible if it is large; 
it contributes to D a value [I, 2,  S ]  

D(B2o) = -(352/70P2D)(B& + 215Ba). (6) 
In figure 2, one can see that D > 0 for compressed tetrahedral D, symmetry and 

that D < 0 for elongated symmetry. When 0 < 53". so-I and SO-111 are not so good as so. 
II compared with the diagonalization calculation. In particular, when 0 = 49". D(s0.1) 
or D(SO-III) is only half the total value. This is understandable according to (6). For 
positive BZO, D(BZa) is large. Em is negative in compression, leading to negligible D(Bm), 
and we see that SO-I and som operate well. 

A perturbation procedure can work well when the perturbation term is much smaller 
than the unperturbed Hamiltonian. The so-I procedure treats the low-symmetric part of 
a field as a perturbation term and is thus expected to be appropriate for weak distortion. 
Indeed, it does not work well when the component is large, in the lowest-order 
perturbation, as can be seen in figure 1 and table 2. There could be doubt that the s0.11 
procedure might be divergent [4] as it treats the cubic field as a perturbation term. Baur 
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Figure 1. D versus Bm, for B = 911, C= 3273, 
5 = 3 3 7 , ~ = 6 5 . p =  -131,D,= IUMcm-'and 
B& = Mwx) cm-'. 
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Figure 2. 8-dependence of D in Dtd symmetry, 
evaluated by using B = 911, C= 3273, a= 65, 
B = -131, p ,=  85?cm-', E =  337, A, = -(27/ 
16)D,andAl = lOA,. 

Table 2.Zero-field splitting parameter D for Fe" ions in garnets. 
~ ~~~ ~~~~~ ~ ~~~~~ ~ ~~~~~ ~~~ ~~~~~~~ ~~ ~~~ ~~~~~~~ ~ 

D (lO-'cm-') 

Procedure Y,AI,O,,' Lu,AI,O,,' Y,Ga,O,,b Lu,Ga,O,,b 

50.1 - 1232 -1302 -735 -812 
SO.IIC -1643 - 1765 - 1032 -1175 
S0.lll - 1289 - 1363 -7w -783 
Diagonalization - 1493 - 1617 -846 -969 
Experiments [ I ]  -1028 - 1249 -880 -1131 

' Calculated by taking B = 554, C = 3412 and D, = - 1036 cm" [12]. 
Calculated by taking B = 744. C = 2560 and D, = -655 cm-' [13]. 
' The sixth order was taken into account. 

. . I , ,  ,, , , .  , , I  , I , ,  , ,  , ,  , , . ,  . - ~ ~ ~~~ 

~~~ ~~ ~ 
~~~~~~ 

and Sharma [4] expressed this doubt without numerical support. In fact, so-11 does 
converge when ID,l s 1500 cm-I, as shown in table 1, although it does not work as well 
as so-I in the lowest-order treatment. This indicates that so-11 is applicable to most 
crystals when the sixth order is taken into account. To understand the convergence of 
so-11, we note that only perturbation orders of even index contribute to the splitting, 
unlike the situation for SO-I. This leads to the estimation 

D(')/D(')(sO.II) - ((VJ/Eo)* - (10D,/G)2, 
with &denoting free-ion energiesamong which C = 1OB + X i s  the smallest (for MnZ+ 
and Fe3+ ions in crystals, G = 23OOC-26000 cm-I). 

To support the conclusion of the correctness of the perturbation procedures we 
calculate D for Fe3+ in garnets. The results are displayed in table 2. In the calculation, 
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we have taken values of E ,  C and D, determined from the optical spectra [13] and 5 = 
225cm-I. The superposition model [14] was adopted in deducing E20 and E L ,  with 
crystalline structure data taken from [U]. i4 was deduced from the reported D,, 
according to [l]; t 2  and rq were taken to be 3 and 5 ,  respectively. A, is much greater than 
A4 [14] and was taken to be a4 in our calculation; it does not influence the calculation 
values significantly. The results indicate that the perturbation procedures reach values 
close to those evaluated by diagonalization. We considered only the so mechanism and 
found that 5 = 225 cm-' can fit the experimental data reasonably. However, a better 
understanding of the splitting of the crystals needs to take into account all other mech- 
anisms. 

We have shown that all the three perturbation procedures are correct in tetragonal 
symmetry. However, so-I and s0.w work well only when the low-symmetric field com- 
ponentsaresmall, because they treat the components asaperturbation term. so-II works 
satisfactorily when the sixth order is taken into account. The conclusions also hold for 
trigonal symmetry, as shown recently by Wang er ai [16], 
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